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ABSTRACT

Given the prevalence of large-scale graphs in real-world applications, the stor-
age and time for training neural models have raised increasing concerns. To
alleviate the concerns, we propose and study the problem of graph condensa-
tion for graph neural networks (GNNs). Specifically, we aim to condense the
large, original graph into a small, synthetic and highly-informative graph, such
that GNNs trained on the small graph and large graph have comparable perfor-
mance. We approach the condensation problem by imitating the GNN training
trajectory on the original graph through the optimization of a gradient match-
ing loss and design a strategy to condense node features and structural infor-
mation simultaneously. Extensive experiments have demonstrated the effective-
ness of the proposed framework in condensing different graph datasets into in-
formative smaller graphs. In particular, we are able to approximate the orig-
inal test accuracy by 95.3% on Reddit, 99.8% on Flickr and 99.0% on Cite-
seer, while reducing their graph size by more than 99.9%, and the condensed
graphs can be used to train various GNN architectures. Code is released at
https://github.com/ChandlerBang/GCond.

1 INTRODUCTION

Many real-world data can be naturally represented as graphs such as social networks, chemical
molecules, transportation networks, and recommender systems (Battaglia et al., 2018; Wu et al.,
2019b; Zhou et al., 2018). As a generalization of deep neural networks for graph-structured data,
graph neural networks (GNNs) have achieved great success in capturing the abundant information
residing in graphs and tackle various graph-related applications (Wu et al., 2019b; Zhou et al., 2018).

However, the prevalence of large-scale graphs in real-world scenarios, often on the scale of millions
of nodes and edges, poses significant computational challenges for training GNNs. More dramat-
ically, the computational cost continues to increase when we need to retrain the models multiple
times, e.g., under incremental learning settings, hyperparameter and neural architecture search. To
address this challenge, a natural idea is to properly simplify, or reduce the graph so that we can
not only speed up graph algorithms (including GNNs) but also facilitate storage, visualization and
retrieval for associated graph data analysis tasks.

There are two main strategies to simplify graphs: graph sparsification (Peleg & Schäffer, 1989;
Spielman & Teng, 2011) and graph coarsening (Loukas & Vandergheynst, 2018; Loukas, 2019) .
Graph sparsification approximates a graph with a sparse graph by reducing the number of edges,
while graph coarsening directly reduces the number of nodes by replacing the original node set with
its subset. However, these methods have some shortcomings: (1) sparsification becomes much less
promising in simplifying graphs when nodes are also associated with attributes as sparsification does
not reduce the node attributes; (2) the goal of sparsification and coarsening is to preserve some graph
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153,932 training nodes 154 training nodes

Figure 1: We study the graph condensation problem, which seeks to learn a small, synthetic graph,
features and labels {A0

,X0
,Y0} from a large, original dataset {A,X,Y}, which can be used to train

GNN models that generalize comparably to the original. Shown: An illustration of our proposed
GCOND graph condensation approach’s empirical performance, which exhibits 95.3% of original
graph test performance with 99.9% data reduction.

properties such as principle eigenvalues (Loukas & Vandergheynst, 2018) that could be not optimal
for the downstream performance of GNNs. In this work, we ask if it is possible to significantly
reduce the graph size while providing sufficient information to well train GNN models.

Motivated by dataset distillation (Wang et al., 2018) and dataset condensation (Zhao et al., 2021)
which generate a small set of images to train deep neural networks on the downstream task, we
aim to condense a given graph through learning a synthetic graph structure and node attributes.
Correspondingly, we propose the task of graph condensation1. It aims to minimize the performance
gap between GNN models trained on a synthetic, simplified graph and the original training graph. In
this work, we focus on attributed graphs and the node classification task. We show that we are able
to reduce the number of graph nodes to as low as 0.1% while training various GNN architectures to
reach surprisingly good performance on the synthetic graph. For example, in Figure 1, we condense
the graph of the Reddit dataset with 153,932 training nodes into only 154 synthetic nodes together
with their connections. In essence, we face two challenges for graph condensation: (1) how to
formulate the objective for graph condensation tractable for learning; and (2) how to parameterize
the to-be-learned node features and graph structure. To address the above challenges, we adapt
the gradient matching scheme in (Zhao et al., 2021) and match the gradients of GNN parameters
w.r.t. the condensed graph and original graph. In this way, the GNN trained on condensed graph
can mimic the training trajectory of that on real data. Further, we carefully design the strategy for
parametrizations for the condensed graph. In particular, we introduce the strategy of parameterizing
the condensed features as free parameters and model the synthetic graph structure as a function of
features, which takes advantage of the implicit relationship between structure and node features,
consumes less number of parameters and offers better performance.

Our contributions can be summarized as follows:

1. We make the first attempt to condense a large-real graph into a small-synthetic graph, such that
the GNN models trained on the large graph and small graph have comparable performance. We
introduce a proposed framework for graph condensation (GCOND) which parameterizes the con-
densed graph structure as a function of condensed node features, and leverages a gradient match-
ing loss as the condensation objective.

2. Through extensive experimentation, we show that GCOND is able to condense different graph
datasets and achieve comparable performance to their larger counterparts. For instance, GCOND
approximates the original test accuracy by 95.3% on Reddit, 99.8% on Flickr and 99.0% on Cite-
seer, while reducing their graph size by more than 99.9%. Our approach consistently outperforms
coarsening, coreset and dataset condensation baselines.

3. We show that the condensed graphs can generalize well to different GNN test models. Addition-
ally, we observed reliable correlation of performances between condensed dataset training and
whole-dataset training in the neural architecture search (NAS) experiments.

2 RELATED WORK

Dataset Distillation & Condensation. Dataset distillation (DD) (Wang et al., 2018; Bohdal et al.,
2020; Nguyen et al., 2021; Wang et al., 2022; Cazenavette et al., 2022) aims to distill knowledge of

1We aim to condense both graph structure and node attributes. A formal definition is given in Section 3.
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a large training dataset into a small synthetic dataset, such that a model trained on the synthetic set
is able to obtain the comparable performance to that of a model trained on the original dataset. To
improve the efficiency of DD, dataset condensation (DC) (Zhao et al., 2021; Zhao & Bilen, 2021)
is proposed to learn the small synthetic dataset by matching the gradients of the network parameters
w.r.t. large-real and small-synthetic training data. However, these methods are designed exclusively
for image data and are not applicable to non-Euclidean graph-structured data where samples (nodes)
are interdependent. In this work, we generalize the problem of dataset condensation to graph domain
and we seek to jointly learn the synthetic node features as well as graph structure. Additionally, our
work relates to coreset methods (Welling, 2009; Sener & Savarese, 2018; Rebuffi et al., 2017), which
seek to find informative samples from the original datasets. However, they rely on the presence of
representative samples, and tend to give suboptimal performance.

Graph Sparsification & Coarsening. Graph sparsification and coarsening are two means of reduc-
ing the size of a graph. Sparsification reduces the number of edges while approximating pairwise
distances (Peleg & Schäffer, 1989), cuts (Karger, 1999) or eigenvalues (Spielman & Teng, 2011)
while coarsening reduces the number of nodes with similar constraints (Loukas & Vandergheynst,
2018; Loukas, 2019; Deng et al., 2020), typically by grouping original nodes into super-nodes, and
defining their connections. Cai et al. (2021) proposes a GNN-based framework to learn these con-
nections to improve coarsening quality. Huang et al. (2021b) adopts coarsening as a preprocessing
method to help scale up GNNs. Graph condensation also aims to reduce the number of nodes, but
aims to learn synthetic nodes and connections in a supervised way, rather than unsupervised group-
ing as in these prior works. Graph pooling is also related to our work, but it targets at improving
graph-level representation learning (see Appendix D).

Graph Neural Networks. Graph neural networks (GNNs) are a modern way to capture the intuition
that inferences for individual samples (nodes) can be enhanced by utilizing graph-based information
from neighboring nodes (Kipf & Welling, 2017; Hamilton et al., 2017; Klicpera et al., 2019; Velick-
ovic et al., 2018; Wu et al., 2019b;a; Liu et al., 2020; 2021; You et al., 2021; Zhou et al., 2021; Zhao
et al., 2022). Due to their prevalence, various real-world applications have been tremendously fa-
cilitated including recommender systems (Ying et al., 2018a; Fan et al., 2019), computer vision (Li
et al., 2019) and drug discovery (Duvenaud et al., 2015).

Graph Structure Learning. Our work is also related to graph structure learning, which explores
methods to learn graphs from data. One line of work (Dong et al., 2016; Egilmez et al., 2017) learns
graphs under certain structural constraints (e.g. sparsity) based on graph signal processing. Recent
efforts aim to learn graphs by leveraging GNNs (Franceschi et al., 2019; Jin et al., 2020; Chen et al.,
2020). However, these methods are incapable of learning graphs with smaller size, and are thus not
applicable for graph condensation. For more related works on graph structure learning and graph
generation, we kindly refer the reader to recent surveys (Ding et al., 2022; Zhu et al., 2021b).

3 METHODOLOGY

In this section, we present our proposed graph condensation framework, GCOND. Consider that we
have a graph dataset T = {A,X,Y}, where A 2 RN⇥N is the adjacency matrix, N is the number
of nodes, X 2 RN⇥d is the d-dimensional node feature matrix and Y 2 {0, . . . , C � 1}N denotes
the node labels over C classes. Graph condensation aims to learn a small, synthetic graph dataset
S = {A0

,X0
,Y0} with A0 2 RN 0⇥N 0

, X0 2 RN 0⇥D, Y0 2 {0, . . . , C � 1}N 0
and N

0 ⌧ N , such
that a GNN trained on S can achieve comparable performance to one trained on the much larger T .
Thus, the objective can be formulated as the following bi-level problem,

min
S

L (GNN✓S (A,X),Y) s.t ✓S = argmin
✓

L(GNN✓(A
0
,X0),Y0), (1)

where GNN✓ denotes the GNN model parameterized with ✓, ✓S denotes the parameters of the
model trained on S , and L denotes the loss function used to measure the difference between model
predictions and ground truth, i.e. cross-entropy loss. However, optimizing the above objective can
lead to overfitting on a specific model initialization. To generate condensed data that generalizes to
a distribution of random initializations P✓0 , we rewrite the objective as follows:

min
S

E✓0⇠P✓0
[L (GNN✓S (A,X),Y)] s.t. ✓S = argmin

✓
L(GNN✓(✓0)(A

0
,X0),Y0). (2)

where ✓(✓0) indicates that ✓ is a function acting on ✓0. Note that the setting discussed above is for
inductive learning where all the nodes are labeled and test nodes are unseen during training. We can
easily generalize graph condensation to transductive setting by assuming Y is partially labeled.
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3.1 GRAPH CONDENSATION VIA GRADIENT MATCHING

To tackle the optimization problem in Eq. (2), one strategy is to compute the gradient of L w.r.t S and
optimize S via gradient descent, as in dataset distillation (Wang et al., 2018). However, this requires
solving a nested loop optimization and unrolling the whole training trajectory of the inner problem,
which can be prohibitively expensive. To bypass the bi-level optimization, we follow the gradient
matching method proposed in (Zhao et al., 2021) which aims to match the network parameters w.r.t.
large-real and small-synthetic training data by matching their gradients at each training step. In this
way, the training trajectory on small-synthetic data S can mimic that on the large-real data T , i.e.,
the models trained on these two datasets converge to similar solutions (parameters). Concretely, the
parameter matching process for GNNs can be modeled as follows:

minS E✓0⇠P✓0

hPT�1
t=0 D

⇣
✓S
t ,✓

T
t

⌘i
with

✓S
t+1 = opt✓

⇣
L
⇣

GNN✓S
t
(A0

,X0),Y0
⌘⌘

and ✓T
t+1 = opt✓

⇣
L
⇣

GNN✓T
t
(A,X),Y

⌘⌘ (3)

where D(·, ·) is a distance function, T is the number of steps of the whole training trajectory, opt✓ is
the update rule for model parameters, and ✓S

t , ✓T
t denote the model parameters trained on S and T

at time step t, respectively. Since our goal is to match the parameters step by step, we then consider
one-step gradient descent for the update rule opt✓:

✓S
t+1  ✓S

t � ⌘r✓L
⇣

GNN✓S
t
(A0

,X0),Y0
⌘

and ✓T
t+1  ✓T

t � ⌘r✓L
⇣

GNN✓T
t
(A,X),Y

⌘

(4)
where ⌘ is the learning rate for the gradient descent. Based on the observation made in Zhao et al.
(2021) that the distance between ✓S

t and ✓T
t is typically small, we can simplify the objective as a

gradient matching process as follows,

min
S

E✓0⇠P✓0

"
T�1X

t=0

D (r✓L (GNN✓t(A
0
,X0),Y0) ,r✓L (GNN✓t(A,X),Y))

#
(5)

where ✓S
t and ✓T

t are replaced by ✓t, which is trained on the small-synthetic graph. The distance D
is further defined as the sum of the distance dis at each layer. Given two gradients GS 2 Rd1⇥d2 and
GT 2 Rd1⇥d2 at a specific layer, the distance dis(·, ·) used for condensation is defined as follows,

dis(GS
,GT ) =

d2X

i=1

 
1� GS

i ·GT
i��GS

i

�� ��GT
i

��

!
(6)

where GS
i ,G

T
i are the i-th column vectors of the gradient matrices. With the above formulations,

we are able to achieve parameter matching through an efficient strategy of gradient matching.

We note that jointly learning the three variables A0
,X0 and Y0 is highly challenging, as they are

interdependent. Hence, to simplify the problem, we fix the node labels Y0 while keeping the class
distribution the same as the original labels Y.

Graph Sampling. GNNs are often trained in a full-batch manner (Kipf & Welling, 2017; Wu
et al., 2019b). However, as suggested by previous works that reconstruct data from gradients (Zhu
et al., 2019), large batch size tends to make reconstruction more difficult because more variables are
involved during optimization. To make things worse, the computation cost of GNNs gets expensive
on large graphs as the forward pass of GNNs involves the aggregation of enormous neighboring
nodes. To address the above issues, we sample a fixed-size set of neighbors on the original graph in
each aggregation layer of GNNs and adopt a mini-batch training strategy. To further reduce memory
usage and ease optimization, we calculate the gradient matching loss for nodes from different classes
separately, as matching the gradients w.r.t. the data from a single class is easier than that from all
classes. Specifically, for a given class c, we sample a batch of nodes of class c together with a
portion of their neighbors from large-real data T . We denote the process as (Ac,Xc,Yc) ⇠ T .
For the condensed graph A0, we sample a batch of synthetic nodes of class c but do not sample
their neighbors. In other words, we use all of their neighbors, i.e., all other nodes, during the
aggregation process, since we need to learn the connections with other nodes. We denote the process
as (A0

c,X
0
c,Y

0
c) ⇠ S .

3.2 MODELING CONDENSED GRAPH DATA
One essential challenge in the graph condensation problem is how to model the condensed graph
data and resolve dependency among nodes. The most straightforward way is to treat both A0 and X0
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as free parameters. However, the number of parameters in A0 grows quadratically as N 0 increases.
The increased model complexity can pose challenges in optimizing the framework and increase the
risk of overfitting. Therefore, it is desired to parametrize the condensed adjacency matrix in a way
where the number of parameters does not grow too fast. On the other hand, treating A0 and X0

as independent parameters overlooks the implicit correlations between graph structure and features,
which have been widely acknowledged in the literature (III et al., 2014; Shalizi & Thomas, 2011);
e.g., in social networks, users interact with others based on their interests, while in e-commerce,
users purchase products due to certain product attributes. Hence, we propose to model the condensed
graph structure as a function of the condensed node features:

A0 = g�(X
0), with A0

ij = Sigmoid
✓MLP�([x0

i;x
0
j ]) + MLP�([x0

j ;x
0
i])

2

◆
(7)

where MLP� is a multi-layer neural network parameterized with � and [·; ·] denotes concatenation.
In Eq. (7), we intentionally control A0

ij = A0
ji to make the condensed graph structure symmetric

since we are mostly dealing with symmetric graphs. It can also adjust to asymmetric graphs by
setting A0

ij = Sigmoid(MLP�([xi;x0
j ]). Then we rewrite our objective as

min
X0,�

E✓0⇠P✓0

"
T�1X

t=0

D (r✓L (GNN✓t(g�(X
0),X0),Y0) ,r✓L (GNN✓t(A,X),Y))

#
(8)

Note that there are two clear benefits of the above formulation over the naı̈ve one (free parameters).
Firstly, the number of parameters for modeling graph structure no longer depends on the number
of nodes, hence avoiding jointly learning O(N 02) parameters; as a result, when N

0 gets larger,
GCOND suffers less risk of overfitting. Secondly, if we want to grow the synthetic graph by adding
more synthetic nodes condensed from real graph, the trained MLP� can be employed to infer the
connections of new synthetic nodes, and hence we only need to learn their features.

Alternating Optimization Schema. Jointly optimizing X0 and � is often challenging as they are
directly affecting each other. Instead, we propose to alternatively optimize X0 and �: we update �
for the first ⌧1 epochs and then update X0 for ⌧2 epochs; the process is repeated until the stopping
condition is met – we find empirically that this does better as shown in Appendix C.

Sparsification. In the learned condensed adjacency matrix A0, there can exist some small values
which have little effect on the aggregation process in GNNs but still take up a certain amount of
storage (e.g. 4 bytes per float). Thus, we remove the entries whose values are smaller than a given
threshold � to promote sparsity of the learned A0. We further justify that suitable choices of � for
sparsification do not degrade performance a lot in Appendix C.

The detailed algorithm can be found in Algorithm 1 in Appendix B. In detail, we first set the con-
densed label set Y0 to fixed values and initialize X0 as node features randomly selected from each
class. In each outer loop, we sample a GNN model initialization ✓ from a distribution P✓ . Then,
for each class we sample the corresponding node batches from T and S , and calculate the gradient
matching loss within each class. The sum of losses from different classes are used to update X0 or �.
After that we update the GNN parameters for ⌧✓ epochs. When finishing the updating of condensed
graph parameters, we filter edge weights smaller than � to obtain the final sparsified graph structure.

A “Graphless” Model Variant. We now explore another parameterization for the condensed graph
data. We provide a model variant named GCOND-X that only learns the condensed node features
X0 without learning the condensed structure A0. In other words, we use a fixed identity matrix I as
the condensed graph structure. Specifically, this model variant aims to match the gradients of GNN
parameters on the large-real data (A,X) and small-synthetic data (I,X0). Although GCOND-X
is unable to learn the condensed graph structure which can be highly useful for downstream data
analysis, it still shows competitive performance in Table 2 in the experiments because the features
are learned to incorporate relevant information from the graph via the matching loss.

4 EXPERIMENTS

In this section, we design experiments to validate the effectiveness of the proposed framework
GCOND. We first introduce experimental settings, then compare GCOND against representative
baselines with discussions and finally show some advantages of GCOND.
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4.1 EXPERIMENTAL SETUP

Datasets. We evaluate the condensation performance of the proposed framework on three transduc-
tive datasets, i.e., Cora, Citeseer (Kipf & Welling, 2017) and Ogbn-arxiv (Hu et al., 2020), and two
inductive datasets, i.e., Flickr (Zeng et al., 2020) and Reddit (Hamilton et al., 2017). We use the pub-
lic splits for all the datasets. For the inductive setting, we follow the setup in (Hamilton et al., 2017)
where the test graph is not available during training. Dataset statistics are shown in Appendix A.

Baselines. We compare our proposed methods to five baselines: (i) one graph coarsening
method (Loukas, 2019; Huang et al., 2021b), (ii-iv) three coreset methods (Random, Herd-
ing (Welling, 2009) and K-Center (Farahani & Hekmatfar, 2009; Sener & Savarese, 2018)), and
(v) dataset condensation (DC). For the graph coarsening method, we adopt the variation neighbor-
hoods method implemented by Huang et al. (2021b). For coreset methods, we first use them to
select nodes from the original dataset and induce a subgraph from the selected nodes to serve as the
reduced graph. In Random, the nodes are randomly selected. The Herding method, which is often
used in continual learning (Rebuffi et al., 2017; Castro et al., 2018), picks samples that are closest
to the cluster center. K-Center selects the center samples to minimize the largest distance between
a sample and its nearest center. We use the implementations provided by Zhao et al. (2021) for
Herding, K-Center and DC. As vanilla DC cannot leverage any structure information, we develop a
variant named DC-Graph, which additionally leverages graph structure during test stage, to replace
DC for the following experiments. A comparison between DC, DC-Graph, GCOND and GCOND-X
is shown in Table 1 and their training details can be found in Appendix A.3.

Evaluation. We first use the aforementioned baselines to obtain condensed graphs and then eval-
uate them on GNNs for both transductive and inductive node classification tasks. For transductive
datasets, we condense the full graph with N nodes into a synthetic graph with rN (0 < r < 1)
nodes, where r is the ratio of synthetic nodes to original nodes. For inductive datasets, we only
condense the training graph since the rest of the full graph is not available during training. The
choices of r2 are listed in Table 2. For each r, we generate 5 condensed graphs with different seeds.
To evaluate the effectiveness of condensed graphs, we have two stages: (1) a training stage, where
we train a GNN model on the condensed graph, and (2) a test stage, where the trained GNN uses the
test graph (or full graph in transductive setting) to infer the labels for test nodes. The resulting test
performance is compared with that obtained when training on original datasets. All experiments are
repeated 10 times, and we report average performance and variance.

Hyperparameter settings. As our goal is to generate highly informative synthetic graphs which can
benefit GNNs, we choose one representative model, GCN (Kipf & Welling, 2017), for performance
evaluation. For the GNN used in condensation, i.e., the GNN✓(·) in Eq. (8), we adopt SGC (Wu
et al., 2019a) which decouples the propagation and transformation process but still shares similar
graph filtering behavior as GCN. Unless otherwise stated, we use 2-layer models with 256 hidden
units. The weight decay and dropout for the models are set to 0 in condensation process. More
details for hyper-parameter tuning can be found in Appendix A.

4.2 COMPARISON WITH BASELINES

In this subsection, we test the performance of a 2-layer GCN on the condensed graphs, and compare
the proposed GCOND and GCOND-X with baselines. Notably, all methods produce both structure
and node features, i.e. A0 and X0, except DC-Graph and GCOND-X. Since DC-Graph and GCOND-
X do not produce any structure, we simply use an identity matrix as the adjacency matrix when
training GNNs solely on condensed features. However, during inference, we use the full graph
(transductive setting) or test graph (inductive setting) to propagate information based on the trained
GNNs. This training paradigm is similar to the C&S model (Huang et al., 2021a) which trains
an MLP without the graph information and performs label propagation based on MLP predictions.
Table 2 reports node classification performance; we make the following observations:

Obs 1. Condensation methods achieve promising performance even with extremely large re-
duction rates. Condensation methods, i.e., GCOND, GCOND-X and DC-Graph, outperform coreset
methods and graph coarsening significantly at the lowest ratio r for each dataset. This shows the
importance of learning synthetic data using the guidance from downstream tasks. Notably, GCOND

2We determine r based on original graph size and labeling rate – see Appendix A for details.
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Table 1: Information comparison used during condensation, training and test for reduction methods.
A0

,X0 and A,X are condensed (original) graph and features, respectively.
DC DC-Graph GCOND-X GCOND

Condensation Xtrain Xtrain Atrain,Xtrain Atrain,Xtrain

Training X0 X0 X0 A0,X0

Test Xtest Atest,Xtest Atest,Xtest Atest,Xtest

Table 2: GCOND and GCOND-X achieves promising performance in comparison to baselines even
with extremely large reduction rates. We report transductive performance on Citeseer, Cora, Ogbn-

arxiv; inductive performance on Flickr, Reddit. Performance is reported as test accuracy (%).

Baselines Proposed

Dataset Ratio (r) Random
(A0,X0)

Herding
(A0,X0)

K-Center
(A0,X0)

Coarsening
(A0,X0)

DC-Graph
(X0)

GCOND-X
(X0)

GCOND
(A0,X0)

Whole
Dataset

Citeseer

0.9% 54.4±4.4 57.1±1.5 52.4±2.8 52.2±0.4 66.8±1.5 71.4±0.8 70.5±1.2
71.7±0.11.8% 64.2±1.7 66.7±1.0 64.3±1.0 59.0±0.5 66.9±0.9 69.8±1.1 70.6±0.9

3.6% 69.1±0.1 69.0±0.1 69.1±0.1 65.3±0.5 66.3±1.5 69.4±1.4 69.8±1.4

Cora

1.3% 63.6±3.7 67.0±1.3 64.0±2.3 31.2±0.2 67.3±1.9 75.9±1.2 79.8±1.3
81.2±0.22.6% 72.8±1.1 73.4±1.0 73.2±1.2 65.2±0.6 67.6±3.5 75.7±0.9 80.1±0.6

5.2% 76.8±0.1 76.8±0.1 76.7±0.1 70.6±0.1 67.7±2.2 76.0±0.9 79.3±0.3

Ogbn-arxiv

0.05% 47.1±3.9 52.4±1.8 47.2±3.0 35.4±0.3 58.6±0.4 61.3±0.5 59.2±1.1
71.4±0.10.25% 57.3±1.1 58.6±1.2 56.8±0.8 43.5±0.2 59.9±0.3 64.2±0.4 63.2±0.3

0.5% 60.0±0.9 60.4±0.8 60.3±0.4 50.4±0.1 59.5±0.3 63.1±0.5 64.0±0.4

Flickr

0.1% 41.8±2.0 42.5±1.8 42.0±0.7 41.9±0.2 46.3±0.2 45.9±0.1 46.5±0.4
47.2±0.10.5% 44.0±0.4 43.9±0.9 43.2±0.1 44.5±0.1 45.9±0.1 45.0±0.2 47.1±0.1

1% 44.6±0.2 44.4±0.6 44.1±0.4 44.6±0.1 45.8±0.1 45.0±0.1 47.1±0.1

Reddit

0.05% 46.1±4.4 53.1±2.5 46.6±2.3 40.9±0.5 88.2±0.2 88.4±0.4 88.0±1.8
93.9±0.00.1% 58.0±2.2 62.7±1.0 53.0±3.3 42.8±0.8 89.5±0.1 89.3±0.1 89.6±0.7

0.2% 66.3±1.9 71.0±1.6 58.5±2.1 47.4±0.9 90.5±1.2 88.8±0.4 90.1±0.5

achieves 79.8%, 80.1% and 79.3% at 1.3%, 2.6% and 5.2% condensation ratios at Cora, while the
whole dataset performance is 81.2%. The GCOND variants also show promising performance on
Cora, Flickr and Reddit at all coarsening ratios. Although the gap between whole-dataset Ogbn-arxiv

and our methods is larger, they still outperform baselines by a large margin.

Obs 2. Learning X0 instead of (A0
,X0) as the condensed graph can also lead to good results.

GCOND-X achieves close performance to GCOND on 11 of 15 cases. Since our objective in graph
condensation is to achieve parameter matching through gradient matching, training a GNN on the
learned features X0 with identity adjacency matrix is also able to mimic the training trajectory of
GNN parameters. One reason could be that X0 has already encoded node features and structural in-
formation of the original graph during the condensation process. However, there are many scenarios
where the graph structure is essential such as the generalization to other GNN architectures (e.g.,
GAT) and visualizing the patterns in the data. More details are given in the following subsections.

Obs 3. Condensing node features and structural information simultaneously can lead to better
performance. In most cases, GCOND and GCOND-X obtain much better performance than DC-
Graph. One key reason is that GCOND and GCOND-X can take advantage of both node features
and structural information in the condensation process. We notice that DC-Graph achieves a highly
comparable result (90.5%) on Reddit at 0.2% condensation ratio to the whole dataset performance
(93.9%). This may indicate that the original training graph structure might not be useful. To verify
this assumption, we train a GCN on the original Reddit dataset without using graph structure (i.e.,
setting Atrain = I), but allow using the test graph structure for inference using the trained model. The
obtained performance is 92.5%, which is very close to the original performance 93.9%, indicating
that training without graph structure can still achieve comparable performance. We also note that
learning X0

,A0 simultaneously creates opportunities to absorb information from graph structure
directly into learned features, lessening reliance on distilling graph properties reliably while still
achieving good generalization performance from features.

Obs 4. Larger condensed graph size does not strictly indicate better performance. Although
larger condensed graph sizes allow for more parameters which can potentially encapsulate more
information from original graph, it simultaneously becomes harder to optimize due to the increased
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Table 3: Graph condensation can work well with different architectures. Avg. stands for the average
test accuracy of APPNP, Cheby, GCN, GraphSAGE and SGC. SAGE stands for GraphSAGE.

Methods Data MLP GAT APPNP Cheby GCN SAGE SGC Avg.

Citeseer

r = 1.8%

DC-Graph X0 66.2 - 66.4 64.9 66.2 65.9 69.6 66.6
GCOND-X X0 69.6 - 69.7 70.6 69.7 69.2 71.6 70.2

GCOND A0,X0 63.9 55.4 69.6 68.3 70.5 66.2 70.3 69.0

Cora

r = 2.6%

DC-Graph X0 67.2 - 67.1 67.7 67.9 66.2 72.8 68.3
GCOND-X X0 76.0 - 77.0 74.1 75.3 76.0 76.1 75.7

GCOND A0,X0 73.1 66.2 78.5 76.0 80.1 78.2 79.3 78.4

Ogbn-arxiv

r = 0.25%

DC-Graph X0 59.9 - 60.0 55.7 59.8 60.0 60.4 59.2
GCOND-X X0 64.1 - 61.5 59.5 64.2 64.4 64.7 62.9

GCOND A0,X0 62.2 60.0 63.4 54.9 63.2 62.6 63.7 61.6

Flickr

r = 0.5%

DC-Graph X0 43.1 - 45.7 43.8 45.9 45.8 45.6 45.4
GCOND-X X0 42.1 - 44.6 42.3 45.0 44.7 44.4 44.2

GCOND A0,X0 44.8 40.1 45.9 42.8 47.1 46.2 46.1 45.6

Reddit

r = 0.1%

DC-Graph X0 50.3 - 81.2 77.5 89.5 89.7 90.5 85.7
GCOND-X X0 40.1 - 78.7 74.0 89.3 89.3 91.0 84.5

GCOND A0,X0 42.5 60.2 87.8 75.5 89.4 89.1 89.6 86.3

model complexity. We observe that once the condensation ratio reaches a certain threshold, the
performance becomes stable. However, the performance of coreset methods and graph coarsening is
much more sensitive to the reduction ratio. Coreset methods only select existing samples while graph
coarsening groups existing nodes into super nodes. When the reduction ratio is too low, it becomes
extremely difficult to select informative nodes or form representative super nodes by grouping.

4.3 GENERALIZABILITY OF CONDENSED GRAPHS

Next, we illustrate the generalizability of condensed graphs from the following three perspectives.

Different Architectures. Next, we show the generalizability of the graph condensation proce-
dure. Specifically, we show test performance when using a graph condensed by one GNN model
to train different GNN architectures. Specifically, we choose APPNP (Klicpera et al., 2019), GCN,
SGC (Wu et al., 2019a), GraphSAGE (Hamilton et al., 2017), Cheby (Defferrard et al., 2016) and
GAT (Velickovic et al., 2018). We also include MLP and report the results in Table 3. From the ta-
ble, we find that the condensed graphs generated by GCOND show good generalization on different
architectures. We may attribute such transferability across different architectures to similar filtering
behaviors of those GNN models, which have been studied in Ma et al. (2020); Zhu et al. (2021a).

Versatility of GCOND. The proposed GCOND is highly composable in that we can adopt various
GNNs inside the condensation network. We investigate the performances of various GNNs when us-
ing different GNN models in the condensation process, i.e., GNN✓(·) in Eq. (8). We choose APPNP,
Cheby, GCN, GraphSAGE and SGC to serve as the models used in condensation and evaluation.
Note that we omit GAT due to its deterioration under large neighborhood sizes (Ma et al., 2021).
We choose Cora and Ogbn-arxiv to report the performance in Table 4 where C and T denote con-
densation and test models, respectively. The graphs condensed by different GNNs all show strong
transfer performance on other architectures.

Neural Architecture Search. We also perform experiments on neural architecture search, detailed
in Appendix C.2. We search 480 architectures of APPNP and perform the search process on Cora,
Citeseer and Ogbn-arxiv. Specifically, we train each architecture on the reduced graph for epochs on
as the model converges faster on the smaller graph. We observe reliable correlation of performances
between condensed dataset training and whole-dataset training as shown in Table 9: 0.76/0.79/0.64
for Cora/Citeseer/Ogbn-arxiv.

4.4 ANALYSIS ON CONDENSED DATA

Statistics of Condensed Graphs. In Table 5, we compare several properties between condensed
graphs and original graphs. Note that a widely used homophily measure is defined in (Zhu et al.,
2020) but it does not apply to weighted graphs. Hence, when computing homophily, we binarize the
graphs by removing edges whose weights are smaller than 0.5. We make the following observations.
First, while achieving similar performance for downstream tasks, the condensed graphs contain
fewer nodes and take much less storage. Second, the condensed graphs are less sparse than their
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Table 4: Cross-architecture performance is shown in test accuracy (%). SAGE: GraphSAGE. Graphs
condensed by different GNNs all show strong transfer performance on other architectures.

(a) Cora, r=2.6%

C\T APPNP Cheby GCN SAGE SGC

APPNP 72.1±2.6 60.8±6.4 73.5±2.4 72.3±3.5 73.1±3.1
Cheby 75.3±2.9 71.8±1.1 76.8±2.1 76.4±2.0 75.5±3.5
GCN 69.8±4.0 53.2±3.4 70.6±3.7 60.2±1.9 68.7±5.4
SAGE 77.1±1.1 69.3±1.7 77.0±0.7 76.1±0.7 77.7±1.8
SGC 78.5±1.0 76.0±1.1 80.1±0.6 78.2±0.9 79.3±0.7

(b) Ogbn-arxiv, r=0.05%

C\T APPNP Cheby GCN SAGE SGC

APPNP 60.3±0.2 51.8±0.5 59.9±0.4 59.0±1.1 61.2±0.4
Cheby 57.4±0.4 53.5±0.5 57.4±0.8 57.1±0.8 58.2±0.6
GCN 59.3±0.4 51.8±0.7 60.3±0.3 60.2±0.4 59.2±0.7
SAGE 57.6±0.8 53.9±0.6 58.1±0.6 57.8±0.7 59.0±1.1
SGC 59.7±0.5 49.5±0.8 59.2±1.1 58.9±1.6 60.5±0.6

Table 5: Comparison between condensed graphs and original graphs. The condensed graphs have
fewer nodes and are more dense.

Citeseer, r=0.9% Cora, r=1.3% Ogbn-arxiv, r=0.25% Flickr, r=0.5% Reddit, r=0.1%

Whole GCOND Whole GCOND Whole GCOND Whole GCOND Whole GCOND

Accuracy 70.7 70.5 81.5 79.8 71.4 63.2 47.1 47.1 94.1 89.4
#Nodes 3,327 60 2,708 70 169,343 454 44,625 223 153,932 153
#Edges 4,732 1,454 5,429 2,128 1,166,243 3,354 218,140 3,788 10,753,238 301
Sparsity 0.09% 80.78% 0.15% 86.86% 0.01% 3.25% 0.02% 15.23% 0.09% 2.57%
Homophily 0.74 0.65 0.81 0.79 0.65 0.07 0.33 0.28 0.78 0.04
Storage 47.1 MB 0.9 MB 14.9 MB 0.4 MB 100.4 MB 0.3 MB 86.8 MB 0.5 MB 435.5 MB 0.4 MB

(a) Cora, r=2.5% (b) Citeseer, r=1.8% (c) Arxiv, r=0.05% (d) Flickr, r=0.1% (e) Reddit, r=0.1%

Figure 2: Condensed graphs sometimes exhibit structure mimicking the original (a, b, d). Other
times (c, e), learned features absorb graph properties and create less explicit graph reliance.

larger counterparts. Since the condensed graph is on extremely small scale, there would be almost
no connections between nodes if the condensed graph maintains the original sparsity. Third, for
Citeseer, Cora and Flickr, the homophily information are well preserved in the condensed graphs.

Visualization. We present the visualization results for all datasets in Figure 4, where nodes with
the same color are from the same class. Notably, as the learned condensed graphs are weighted
graphs, we use black lines to denote the edges with weights larger than 0.5 and gray lines to denote
the edges with weights smaller than 0.5. From Figure 4, we can observe some patterns in the con-
densed graphs, e.g., the homophily patterns on Cora and Citeseer are well preserved. Interestingly,
the learned graph for Reddit is very close to a star graph where almost all the nodes only have con-
nections with very few center nodes. Such a structure can be meaningless for GNNs because almost
all the nodes receive the information from their neighbors. In this case, the learned features X0 play
a major role in training GNN parameters, indicating that the original training graph of Reddit is not
very informative, aligning with our observations in Section 4.2.

5 CONCLUSION

The prevalence of large-scale graphs poses great challenges in training graph neural networks. Thus,
we study a novel problem of graph condensation which targets at condensing a large-real graph
into a small-synthetic one while maintaining the performances of GNNs. Through our proposed
framework, we are able to significantly reduce the graph size while approximating the original per-
formance. The condensed graphs take much less space of storage and can be used to efficiently
train various GNN architectures. Future work can be done on (1) improving the transferability of
condensed graphs for different GNNs, (2) studying graph condensation for other tasks such as graph
classification and (3) designing condensation framework for multi-label datasets.
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Graph neural networks meet personalized pagerank. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

11



Published as a conference paper at ICLR 2022

Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, 2019.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, 2020.

Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang. Elastic
graph neural networks. In Proceedings of the 38th International Conference on Machine Learn-
ing, ICML 2021, 18-24 July 2021, Virtual Event, Proceedings of Machine Learning Research,
2021.

Andreas Loukas. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res., (116),
2019.

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller
graphs. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
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